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ABSTRACT
Radial and azimuthal features (such as disc offsets and eccentric rings) seen in high-resolution
images of debris discs provide us with the unique opportunity of finding potential planetary
companions that betray their presence by gravitationally sculpting such asymmetric features.
The young debris disc around HD 115600, imaged recently by the Gemini Planet Imager, is
such a disc with an eccentricity e ∼ 0.1–0.2 and a projected offset from the star of ∼4 au. Using
our modified N-body code that incorporates radiation forces, we first aim to determine the orbit
of a hidden planetary companion potentially responsible for shaping the disc. We run a suite
of simulations covering a broad range of planetary parameters using a Monte Carlo Markov
Chain sampling method and create synthetic images from which we extract the geometric disc
parameters to be compared with the observed and model-derived quantities. We then repeat the
study using a traditional grid to explore the planetary parameter space and then aim to compare
the efficiency of both sampling methods. We find a planet of 7.8 MJ orbiting at 30 au with an
eccentricity of e = 0.2 to be the best fit to the observations of HD 115600. Technically, such
planet has a contrast detectable by direct imaging, however the system’s orientation does not
favour such detection. In this study, at equal number of explored planetary configurations, the
Monte Carlo Markov Chain not only converges faster but provides a better fit than a traditional
grid.

Key words: methods: numerical – methods: statistical – circumstellar matter – stars: individ-
ual: HD 115600 – planetary systems.

1 IN T RO D U C T I O N

Planets can gravitationally perturb debris discs by various dynam-
ical processes, such as secular interactions, where an eccentric or
inclined planet can force the disc eccentricity or inclination (Wyatt
et al. 1999), or resonance interactions, where the planet traps dust at
a specific location, resulting in the creation of dust clumps in the disc
(Quillen & Thorndike 2002). These processes inducing eccentricity,
a disc position offset with respect to the star, or clumps into the disc
can result in brightness asymmetries. Due to the limitations in the
detection techniques, most of the confirmed exoplanets are located
within 10 au of their host star, and potential planets located beyond
this limit (beyond Saturn in our Solar system) remain undetected.
However, even if those distant planets are too small to be detected
with our current telescopes, they can still leave an observational
signature by gravitationally perturbing the dust of their debris disc.
Therefore investigating the dynamical relationship between debris
discs and exoplanets can not only provide some insights on the
origin of debris disc asymmetries, but also provides clues to the
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presence of hidden planets in the outer part of stellar systems, a
region currently difficult to observe.

HD 115600 is a young F2 type star at a distance of 110 pc in
the Scorpius–Centaurus Association (van Leeuwen 2007) of age
∼15 Myr (Pecaut, Mamajek & Bubar 2012). Although an IR excess
was detected by Chen et al. (2011) using Spitzer/MIPS, its debris
disc was imaged for the first time in the H band at λ = 1.6 μm
by Currie et al. (2015) using the Gemini Planet Imager (GPI).
The observation revealed a very broad nearly edge-on disc with an
observed width to mean radius ratio �r/r0 ∼ 0.37, which makes
the HD 115600 debris disc one of the broadest ever observed – see
Table 1 for the main parameters of HD 115600.

Currie et al. (2015) used the radiative transfer code GRATER

(Augereau et al. 1999) to model the disc emission. They found that
the disc, most likely primarily constituted of ice-icy/silicate grains,
appears eccentric with 0.1 < e < 0.2 and its projected centre offset
by xoff = 0.018 arcsec and yoff = 0.029 arcsec compared to the stellar
location leading to a total offset of r =

√
x2

off + y2
off = 0.034 arc-

sec or 3.75 au. They proposed that such disc eccentricity and offset
could have been sculpted by a potential planetary companion. The
absence of a direct detection of such a companion by GPI places an
upper limit of the mass of the potential companion of mp < 7 MJ if
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Table 1. Properties for HD 115600 from Currie et al. (2015).

Stellar Properties

Spectral Type F2V/3V
Age 15 Myra

Luminosity L∗ ∼4.8 Lb�
Mass M∗ ∼1.5 M�
Distance 110.5 pcc

Disc Properties
Width �r 37.5–55 au
Mean Radius r0 48 ± 1.1 au
�r/r0 0.37
Eccentricity e 0.1–0.2
Mass 0.05 Mmoon

Proj. Offset δ 3.7 ± 1.5 au
Line-of-Sight Inclination i 79.5 ± 0.5◦
PA 24 ± 0.5◦

Notes. aPecaut et al. (2012), bChen et al. (2011), cvan
Leeuwen (2007).

it is ideally located on an orbit outside the coronograph mask. The
authors point out that their model, however, respectively overesti-
mates (underestimates) the disc flux at the south-east (south-west)
corner. Using predictions from the gap opening model developed by
Nesvold & Kuchner (2015), as well as the planet-stirring scenario
established by Mustill & Wyatt (2009), only very loose constraints
on the potential planetary companion could be derived and the
authors concluded that either a superjovian planet orbiting at
a < 30 au or a super-Earth located at the very inner edge of the
disc could sculpt the disc.

N-body simulations can be used to model the interaction between
a debris disc and a planet. In these simulations, a disc, modelled
by an ensemble of massless particles, orbits around a central body
representing the star and feels the gravitational perturbation of an-
other massive body. To test different planet configurations, a suite
of these simulations must be run, and the planet parameter space
(comprised of the planet mass and orbital elements) is traditionally
explored by using a grid of set values (Deller & Maddison 2005;
Faramaz et al. 2014). In this approach, the entire parameter space
must be explored to isolate the best fit, and the precision of the
best-fitting parameters directly depends on the size of the grid, and
therefore a large number of simulations are required to reach high
precision. Given the low number of currently resolved debris discs,1

N-body simulations have been so far used to study individual ob-
jects (Beust et al. 2014; Nesvold & Kuchner 2015), however with
the increased number of expected discoveries from the latest and
next generation of instruments such as ALMA and JWST, a more
efficient and statistical approach must be found. For example, the
MCMC approach explores closely located points of the parameter
space along a chain, and by accepting parameter space point re-
sulting in better fits and rejecting point resulting in worse fits, the
chain quickly converges towards the best-fitting region. This method
has been used in astrophysics to estimate cosmological parameters
with high precision (Lewis & Bridle 2002), adjusting semi-analytic
models of galaxy formation (Mutch, Poole & Croton 2013) or fit-
ting planetary orbital element from transit and radial velocity data
(Eastman, Gaudi & Agol 2013). Ural et al. (2015) present the first
study integrating N-body simulations within an MCMC algorithm
to estimate the pre-infall mass of the Carina galaxy before it joins

1 The total resolved debris disc is 41 as referenced by
http://www.circumstellardisks.org/ (accessed 2016 July 25).

the Milky Way satellites group. One focus of our study is to present
a framework for testing if the MCMC algorithm can be used to
more efficiently probe the parameter space of N-body simulations
of a planet shaping a debris disc than a traditional grid method.

In this paper, we investigate the role of planets in determining the
morphology of the HD 115600 debris disc. We dynamically model
the interaction between an exoplanet and the HD 115600 disc using
our modified N-body integrator, and explore the parameter space of
the planets’ orbit and mass using both sampling method MCMC and
a traditional grid method. To compare the results of our numerical
simulations with observations of HD 115600, we create synthetic
images from the simulations at a similar wavelength and resolution
as the GPI image. Thus this study has two primary aims to both test
the MCMC algorithm for exploring the parameter space in N-body
simulations and also provide information on a potentially hidden
companion that planet hunters can use in the future searches.

We first present our general method in Section 2. In order to
derive the grain composition and properties required to turn our
simulations into synthetic images, Section 3 presents our spectral
modelling of the HD 115600 disc using the radiative transfer code
MCFOST. In Section 4, we introduce our numerical method for per-
forming the dynamical simulations, before presenting our results in
Section 5. A summary of our findings and conclusions are given in
Section 6.

2 G E N E R A L M E T H O D

One of our goals in this work is to determine the parameters of
a potential planetary companion sculpting the disc geometry as
observed in the GPI image of Currie et al. (2015). To achieve this,
we run dynamical simulations of a planet interacting with a debris
disc, then combine the results of these simulations with a radiative
transfer code to create a synthetic image of the disc and compare
the disc’s geometric parameters extracted from the synthetic image
to the observations. Modelling the image with a radiative transfer
code, however, not only requires the disc density structure (which
is provided by the dynamical simulations), but also requires a set
of dust properties, such as the grain size distribution, which has not
been constrained by the observations.

Our modelling therefore consists of two parts: we first model
the spectral energy distribution (SED) using a radiative transfer
code to determine the additional dust properties required to model
the image. We then combine our dynamical simulations covering a
range of initial planetary parameters with the radiative transfer code
using the derived dust properties in order to model the image.

2.1 Step 1: SED modelling

To model the SED, we use the radiative transfer code, MCFOST (Pinte
et al. 2006). To calculate the total disc flux at a specific wave-
length MCFOST needs (i) a disc density structure and (ii) information
regarding the dust composition and optical properties.

In this first step, the disc density structure is calculated using a
parametric model that assumes a radial power law. The disc size
is based on the inner and outer radius estimated by Currie et al.
(2015) and we explore different values for the total dust mass, Md.
Additional details are presented in Section 3. To determine the dust
composition and optical properties that best reproduce the observed
SED, we explore a range of values for the unknown properties
related to the dust grain size distribution, as well as the unknown
ratio of silicates to water ice in the grain given the predicted dust
composition by Currie et al. (2015).
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Table 2. Photometry of HD 115600 from different instruments.

λ(µm) F (mJy) σObs (mJy) Reference

0.44 1310 – Girard et al. (2011)
0.482 1700 – Henden et al. (2016)
0.55 1860 – Girard et al. (2011)
1.24 1620 30 Roeser, Demleitner & Schilbach (2010)
1.65 1170 40 Roeser et al. (2010)
2.16 784 17 Roeser et al. (2010)
3.35 374 9 Cutri et al. (2012)
4.6 205 4 Cutri et al. (2012)
8.6 73.6 6.9 Ishihara et al. (2010)
11.6 39.8 0.6 Cutri et al. (2012)
13.0 44.63 1.48 Chen et al. (2014)
22.1 12.3 2 Cutri et al. (2012)
24.0 120.23 2.41 Chen et al. (2014)
31.0 198.38 18.35 Chen et al. (2014)
70.0 180.0 21.93 Chen et al. (2014)

Using the derived parametric disc structure and the dust prop-
erties, MCFOST computes the total flux, Fi, for each wavelength, λi,
corresponding to the data from the literature – see Table 2. We use
a χ2 method to compare the computed and the observed SED, and
the best-fitting parameters for the dust composition are obtained
by minimizing the χ2. Additional details, such as the range of pa-
rameters explored and results of this modelling, are presented in
Section 3.

2.2 Step 2: image modelling

Once the best fits to the dust properties are obtained, we can then
move on to the image modelling. Here we again use MCFOST, but
now the disc structure is generated from the numerical simulations
of a planet interacting with a debris disc. We cover a broad range of
initial planetary masses, mp, semimajor axes, ap, and eccentricities,
ep – further details on the dynamical simulations are provided in
Sections 4.1 and 4.3.

The dust distribution resulting from the dynamical simulations is
converted into a disc structure, which is described in Section 4.2.
MCFOST uses this disc structure and the dust properties derived in
step 1 to compute a synthetic image at λ = 1.6 μm, and we then
extract the disc geometry parameters from the synthetic image. We
use a χ2 method to compare the disc geometric parameters from the
synthetic image with the observed parameters determined by Currie
et al. (2015).

Once the χ2 of a model is calculated, we run a new dynami-
cal simulation for another initial planetary configuration using an
MCMC sampling method to explore the parameter space. In total,
we explore more than 700 planetary configurations before deter-
mining the best-fitting parameters mp, ap, and ep and the resulting
best-fitting disc geometric parameters. More information about this
step is provided in Section 4.3.

3 SE D M O D E L L I N G

3.1 Description of the method

3.1.1 MCFOST requirements

To compare a dynamical model to the observations, the numerical
simulation must be converted into a synthetic image with the ra-
diative transfer code MCFOST. MCFOST tracks monochromatic photon
packets propagating through a 3D spatial grid in order to derive
the temperature structure of the disc. The radiative transfer code

therefore requires a prior 3D disc density structure, as well as infor-
mation regarding the dust composition and optical properties that,
in the case of HD 115600, are as yet unconstrained by the observa-
tions. These required properties are the following five parameters:
the minimal and maximal size of the grain size distribution, smin

and smax, the power-law exponent, p, of the classical grain size dis-
tribution (Dohnanyi 1969), dn(s) ∝ spds, the total dust mass, Md,
and using the predicted composition of the dust by Currie et al.
(2015), the ratio of silicate to icy component in the grain compo-
sition, Rsilicate/ice. Therefore our first aim is to determine these five
free parameters.

To achieve this, we first assume a simplistic parametric model
for the disc density structure, and by creating SEDs over a broad
range of values for the five free parameters, we estimate their best-
fitting values by matching the observed SED with multiwavelength
photometry data – see Table 2. We use a parametric disc density
structure of the following form: �(r) = rα where α = −3.5, with
the inner and outer disc radius and the total dust mass matching the
observed values from Table 1.

3.1.2 Parameter space exploration

Using the information provided by Currie et al. (2015), we explore
the parameter space of free parameters as follows: we first generate
8575 different sets of dust properties by exploring a 5D grid com-
prising seven values for smin between 0.0001 μm < smin < 0.1 μm
in even logarithmic steps; seven values of smax = 25, 50, 75, 100,
200, 400, and 600 μm; five values for p = −3.2, −3.5, −3.8, −4,
and −4.2; five values for Md = 0.05, 0.075, 0.1, 0.15, and 0.2Mmoon;
and seven values for Rsilicate/ice between 20 per cent < Rsilicate/ice <

80 per cent in even steps. In addition, two models for the grain mix-
ture are explored: first grains made of a mixture of silicate and ice
according to Bruggeman’s model, and secondly grains with a sili-
cate core and a coating of ice (Greenburg, Zhao & Hage 1989). We
explored each set of five dust parameters using both grain mixture
models that correspond to a total of 17 150 different sets of dust
properties.

We estimate the best fit for the grain parameters using a χ2
SED

minimization method, where χ2
SED is defined as:

χ2
SED = 1

N − df − 1

N∑
i

(FObs/i − FSim/i)2

σ 2
Obs/i

, (1)

where FObs/i and σ Obs/i are, respectively, each ith value of the N
observed fluxes and uncertainties from Table 2 at the wavelength λi,
df is the number of parameters to fit, and FSim/i is the synthetic flux
derived by the MCFOST at the same wavelength. Given the absence
of associated uncertainties for some photometric values in Table 2,
those values do not contribute to the calculation of the total χ2

SED.

3.2 Results

The χ2 best fit for the Bruggeman grain model resulted in
χ2

SED = 43.1, while the best fit with the Greenburg model led to
χ2

SED = 40.6, slightly favouring a grain model based on the Green-
burg model where the grain is made of a core of silicate with
an external coating of ice. For the unknown dust parameters, the
probability distribution for both grain models are presented in
Fig. 1. Both models seem to privilege a minimal grain
size between 0.01 < smin < 0.1 μm, a power-law index between
−3.8 < p < −3.5, as well as, a high ratio of silicate-to-ice compo-
sition between 0.6 < Rsilicate/ice < 0.8. On the other hand, very little
constraint can be derived for the maximal grain size and the total
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Figure 1. Results from SED modelling: probability distribution for the minimal and maximal grain size, smin, smax, the silicate-to-ice ratio, Rsilicate/ice, the
power-law exponent of the grain distribution, p, and the total dust mass Md, according to both the Greenburg and Bruggeman grain model.

dust mass of the disc, and the similarity between both χ2 prevents
us from drawing a clear conclusion regarding the best-fitting grain
model.

We however decide to use the Greenburg model in the rest of
this study as this model is, in addition to have the lower χ2, in
good agreement with the grains’ reflectance spectra from Currie
et al., which favours a water-ice composition. To later create syn-
thetic image and an SED using a disc density structure resulting
from dynamical simulations, we therefore use the parameters for
the Greenburg best-fitting model (χ2

SED = 40.6): a minimal and
maximal grain size of smin = 0.05 μm and smax = 75 μm using a
grain size exponent of p = −3.5, a total dust mass of Md = 0.2
MMoon, and a grain composition made of 60 per cent silicate (core)
with 40 per cent water-ice component (mantle). We note that the
best-fitting value for each parameter corresponds to the peak of
its Greenburg model probability distribution, with the exception of
Rsilicate/ice, for which the distribution peaks at 0.7.

4 IM AG E M O D E L L I N G

Now that we have the best fit for the dust properties, we aim to repro-
duce the observed disc geometry resulting from the planet shaping
the disc. In this section, we introduce the numerical integrator used
to model the dynamical interaction between the planet and dusty
debris disc, and explain how we use the simulation results as input
for the radiative transfer code. We then describe how the disc ge-
ometry parameters, such as projected offset, disc eccentricity, peak
brightness location, and width, are determined from the synthetic
images and used to compare with the observations.

4.1 Dynamical simulations

4.1.1 Simulations set-up

To dynamically model the interaction between the debris disc and a
potential planetary companion, we use our modified version for the

Table 3. Summary of initial conditions of the test particles used in all
simulations and of the planet parameters explored over the multiple MCMC
chains.

Parameters Particles Planet

Semimajor axis (au) 37.5 < a < 55 16.1 < ap < 34.5
Eccentricity 0 < e < 0.2 0.008 < ep < 0.36
Inclination 0 < i < 1◦ ip = 0◦
Mass (MJ) Massless 1.25 < mp < 9.48

N-body code SWIFT (Levison & Duncan 1994) that includes radiation
forces [radiation pressure and Poynting–Robertson (PR)] and stellar
wind acting on small grains – see Thilliez & Maddison (2015) for
a complete description of the numerical method. The disc orbits a
central star of mass M = 1.5 M�. We choose to model the debris
disc by an initially dynamically warm disc, an appropriate initial
assumption for systems assumed to host a several Jupiter masses
planet (Thilliez & Maddison 2015). A set of N = 5500 massless
test particles represent the grains and are initially located between
37.5 < a < 55 au, with 0 < e < 0.2 and i < 1◦ – see the left-hand
column of Table 3.

Near-infrared images, such as the GPI image, trace the disc ther-
mal emission resulting from small dust grains. Due to their small
size, the grain orbits are sensitive to stellar radiation forces: while
the radial component of the radiation pressure tends to reduce the
stellar gravitational attraction, its tangential component (the PR
effect) tends to drag dust grains inwards. Similarly, stellar winds
accelerate their decay towards the star via the impact of protons
on dust grains. Therefore, while the larger grains in the disc are
expected to remain close to their parent planetesimal belt, smaller
grains are expected to have their orbits perturbed by stellar radia-
tion, and an accurate dynamical model must be taking these forces
into account. Since the blowout grain size in HD 115600 has been
estimated to be sblow = 3 μm (Currie et al. 2015), we model grains
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Figure 2. Secular time-scale, tsec, as a function of the planetary mass,
mp, for a planet, respectively, located at ap = 10, 20, and 30 au around a
1.5 M�. Overplotted are the age of the system, tage, the collisional time-
scale, tcoll,55 au, for a grain at the outer edge of disc (a = 55 au), as well
as the Poynting–Robertson time-scale for a grain at a = 55 au to reach the
critical zone at proximity of the planet (a ∼ 30 au), tPR,55−30 au.

with a size of s = 8 μm with the corresponding ratio between the
gravitational and radiation forces to be β = 0.2. The stellar wind
coefficient is set to sw = 0.6, corresponding to stellar wind in
the Solar system felt by icy grains (Mukai & Yamamoto 1982)
and appropriate for the best-fitting dust grain model determined in
Section 3.2.

For the planetary companion, we cover a range of initial masses,
mp, semimajor axes, ap, and eccentricities, ep, using an MCMC sam-
pling method, with each set of parameters representing an unique
model. See Section 4.3 for more details.

4.1.2 Constraining the planetary mass

The young age of HD 115600 (tage = 15 Myr) can provide an ad-
ditional constraint on the potential planet’s mass. If we first assume
that the planet is forcing the disc eccentricity to precess around a
forced value via secular interactions, then the system must be at
least older than the secular interaction time-scale, tsec < tage. This
time-scale represents the precession time-scale of the disc eccen-
tricity around the value imposed by the planet – see Wyatt et al.
(1999) for a complete definition – and the disc is expected to settle
in its final secularly forced configuration after a period of a few
tsec (Pearce & Wyatt 2014). Fig. 2 shows the secular time-scale,
tsec, as a function of the planetary mass, mp, for a planet, respec-
tively, located at ap =10, 20, and 30 au around a 1.5 M� star.
Under this assumption, as seen in Fig. 2 only a planet more massive
than 0.5 MJ located at ap = 10 au matches this criterion, while
if the planet is located beyond 20 au, then its mass must be at
least 0.1 MJ.

Another constraint is that the planet must sculpt the disc before
the small grains imaged in scattered light are destroyed. For older
debris discs (>100 Myr), a steady-state regime, where new dust
is continuously replenished by collisions of metre-sized planetesi-
mals, is thought to be responsible for the dust survival on time-scale
longer than the PR time-scale, the dust survival time before being
removed by the PR drag. In such discs, collisions are therefore
very active and a dust grain of a specific size can only remain in-
tact for a limited amount of time before undergoing a potentially

destructive collision. The collisional time-scale that defines the pe-
riod between two collisions for a grain at a specific stellar distance,
at the edge of the outerdisc is tcoll,55 au = P55 au/4πτ , where P55 au

is the Keplerian period at 55au and τ is the effective optical depth.
Using the estimated fractional luminosity of HD 115600 (LIR/L�

= 1.7 × 10−3) as a proxy for the disc effective optical depth, we
estimate the collisional time-scale to be tcoll = 16 000 yr. For the
planet to shape the disc, the secular interaction must act on time-
scale smaller or similar to the collisional time-scale: from Fig. 2,
it is clear that only very massive (>5 − 10 MJ) planets located
close the inner edge of the disc (ap = 30 au) could fulfil such
requirement. No planet larger than 7 MJ, however, was detected
by GPI.

For a disc as young as HD 115600, and in the absence of mil-
limetre images revealing the presence of large grains in the disc
and its underlying planetesimals population, it remains unclear if
the micron-sized dust observed on the GPI image results from a
new generation created by planetesimal collisions or if the dust is
a direct remnant of protoplanetary dust. If only dust grains of sim-
ilar small sizes subsist from the protoplanetary disc phase, then,
in the absence of dust replenishment by planetesimal collisions,
the PR drag becomes the limiting factor of the long-term disc sur-
vival. Small dust grains still undergo collisions in the disc until
the entire dust population has been removed by the PR drag. In
this case, another constraint for HD 115600 system is that the
planet must sculpt the disc before all small grains are removed
by the stellar radiation forces. We estimate the PR time-scale for
a 8−μm-sized grain initially located at the outer edge of disc
(a = 55 au) to be dragged into the proximity of the planet re-
gion (a ∼ 30 au) is tPR,55−30 au = 400 × (552 − 302)/β = 1.25 Myr.
This time-scale is crucial, as grains undergoing a close encounter
with a massive planet would be rapidly scattered away, and there-
fore an additional constraint is tsec < tPR,55−30 au. Fig. 2 indicates
that for this constraint to be satisfied, a planet located at
ap = 30 au must be at least mp = 0.3 MJ. If ap = 20 au, then the PR
time-scale for a grain to reach the planet zone from the disc outer
edge increases (tPR,55−20 au = 2.4 Myr), and therefore a planet larger
than mp = 0.6 MJ would be required to satisfy tsec < tPR,55−20 au.
Similarly a planet with a mass of at least mp = 2.0 MJ at ap =
10 au can still excite the disc eccentricity within the PR time-scale,
tPR,55−10 au ∼ 4 Myr.

Overall, this analysis indicates that if we assume secular inter-
actions to be the key element in explaining the morphology of HD
115600, then the planet is certainly more likely to be a Jovian or
super-Jovian (0.5 < mp/MJ < 7+) than a super-Earth planet, and
therefore we will focus our exploration of the space parameter of
the planetary mass within this range.

4.1.3 Simulations duration and recording process

For this study, we run the simulations for a duration tsim =
tPR,55−30 au, corresponding to roughly 0.1tage of HD 115600, which
is the time-scale for grains initially at the outer edge of the disc
(a = 55 au) to be dragged into the proximity of the potential
planet around a ∼ 30 au. The particle positions and velocities are
recorded every trecord = K × Ppl, where Ppl is the planetary orbit
period, and K is the number of sampling times for all particles,
defined as K = N × tsim/(5 × 106 × Ppl). This number of sam-
pling times ensures that we record the particle distribution at the
same planetary phase and that the total number of records do not
exceed 5 × 106.
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4.2 Creating synthetic images

To compare our simulation results with the observed H band im-
age from Currie et al. (2015), we again use MCFOST to create syn-
thetic images at λ = 1.6 μm. MCFOST first derives the temperature
structure of the disc before creating the synthetic image via a ray-
tracing method. We use the dust optical properties determined in
Section 3.2 as input for the procedure. For the density structure of
the disc, the total particle distribution recorded at every trecord during
the simulations is converted into a density distribution, assuming
that the total mass of the disc is 0.2 Mmoon as derived by our SED
modelling in Section 3.2. Using the entire test particle record allows
us to mimic the effect of continuous dust replenishment in the disc
by collisions over the lifetime of the simulation – see Appendix A
for further discussion. This density distribution is then binned into
a 3D cylindrical grid with 90 radial bins between 10 < r < 70 au,
120 azimuthal bins, and 30 vertical bins between z ± 20 au.

We determine the disc geometry parameters to compare with the
observations in Table 1 using a similar method as introduced in
Thilliez & Maddison (2016). To measure the projected disc offset,
δ, we fit an ellipse to the brightest pixel of each 120 azimuthal
bins of the projected disc image to obtain the offset coordinates.
For the radial location of the peak brightness, r0, and the disc
width ratio, �r/r0, we plot the radial surface brightness profile after
azimuthally averaging the surface brightness in each of the 90 radial
bins of the deprojected image. The location of the peak brightness,
r0, corresponds to the maximal surface brightness, while the disc
width ratio, �r/r0, is defined as the full width at half maximum of
surface brightness profile, �r, divided by the location of the peak
brightness, r0. The disc eccentricity is obtained by measuring the
disc deprojected offset, δdeproj, which is obtained by fitting an ellipse
to the brightest pixel of each 120 azimuthal bins of the deprojected
disc, and assuming e = δdeproj/r0.

It should be noted that Currie et al. (2015) use their GPI projected
PSF-subtracted, wavelength collapsed image of HD 115600 to fit an
ellipse to the disc from which they extract the observed mean radius,
r0, and projected offset, δ. They then model the disc emission with
a radiative transfer code and use the best-fitting model to constrain
a (model-derived) eccentricity, e, and (deconvolved model-derived)
disc width, �r/r0. In comparison, we create a synthetic image from
our simulations, which has the same wavelength and pixel resolu-
tion as the GPI 1.6 μm image, but which is not convolved. We then
use this synthetic deprojected deconvolved azimuthally averaged
disc image to extract the mean radius, r0, and disc width, �r/r0.
With the projected deconvolved synthetic image we fit an ellipse
(using the same package as Currie et al.) to get the projected offset,
δ, and eccentricity, e. Therefore, whereas Currie et al.’s mean radius
and offset are extracted from their projected and PSF-subtracted
image, both our disc width and eccentricity values are extracted
from a deconvolved model-fitting image. Despite these slightly dif-
ferent approaches, we use the parameters from Currie et al. (2015)
presented in Table 1 to directly compare with the geometric disc
parameters derived from our MCFOST synthetic images.

To achieve this, we compute the χ2
img of the model defined as:

χ2
img =

∑
X

(XObs − XSim)2

σ 2
X/Obs + σ 2

X/Sim

, (2)

where X is the parameter (r0, e, �r/r0, and δ), σ is the standard
deviation of the parameter being fit, and the subscripts Obs and
Sim correspond to the GPI observation and the simulation, re-
spectively. For the standard deviation of the observed parameters,
σ X/Obs, we use the values provided by Currie et al. (2015) in Table 1.

We statistically obtained the standard deviation of the simulated pa-
rameters, σ X/Sim using a bootstrap method – see Thilliez & Maddi-
son (2016) for more details. The final best-fitting model is therefore
determined by minimizing χ2

img.

4.3 MCMC algorithm

4.3.1 The algorithm

Determining the planetary orbit responsible for shaping the ob-
served disc of HD 115600 requires the exploration of a 3D param-
eter space over mp, ap, and ep. The traditional way to explore this
parameter space is a brute force method, where the parameter space
is represented by a grid over which each parameter is sampled in
bins of a fixed width (dmp, dap, and dep), with each value of the grid
explored. In the literature, the typical number of simulations used
to explore such a grid rarely exceed a few hundreds. This method
is not only computationally expensive, but also wasteful, since the
entire parameter space needs to be explored whether the explored
region is in proximity to the best-fitting region or not.

Here we use the more flexible MCMC sampling method that uses
random numbers to create a chain from an initial set of parameters.
Each set represents one point in the 3D parameter space, and the
MCMC explores the parameter space by moving from one point to
another along a chain (Acquaviva et al. 2011). This process allows
us to efficiently analyse the 3D parameter space to assess the target
probability distribution functions associated with each parameter.
Such an algorithm requires: (i) an initial set of parameters (mp1, ap1,
and ep1), which is the starting point of the chain in the 3D parameter
space being explored, (ii) a prior distribution of parameters from
which i additional sets of parameters (mpi, api, and epi) are created
for the chain to explore, and (iii) a transition operator indicating
when the chain should jump from a set of parameters to the new set
that becomes the centre of the prior distribution at the next iteration
of the chain.

Using the initial set of parameters, mp1, ap1, and ep1 (set 1), as the
initial planet parameters along with the initial disc parameters from
Table 3, the dynamical simulation is performed with our modified
N-body integrator and the synthetic image is then created with
MCFOST. After extracting the geometric parameters of the disc from
the synthetic image (δ, r0, �r/r0, and e), the χ2

set1 of the model is
computed using equation (2). For each parameter, the initial prior
distribution corresponds to a normal distribution centred on the
initial values mp1, ap1, and ep1, with a standard deviation, σap , σep ,
and σmp , which has been tuned to allow the transition operator to
sample the parameter space efficiently – see Appendix A. A new set
(set 2) of parameters, mp2, ap2, and ep2, is then created by drawing a
value for each parameter from the prior distribution. Now using set
2 as the initial planetary parameters, a new dynamical simulation is
run and a new synthetic image is created, from which the χ2

set2 of
the model is determined.

After this step, the transition operator will decide if the chain
should jump and use set 2 instead of set 1 as the centre of the
prior distribution to do the next sampling or not. The transition
operator (also known as acceptance rate), α, between two sets of
initial parameters, set 1 and set 2, of the chain is defined as:

α = exp
(−χ2

set2 + χ2
set1

)
, (3)

where χ2 is defined by equation (2). The condition required for the
chain to make the jump is: α > γ , where γ is a real number drawn
from the uniform distribution between 0 and 1, U(0, 1). If the jump is
made, then the set 2 of parameters (mp2, ap2, and ep2) will be used as
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the centre of the prior distribution to create a new set of parameters
(set 3). If not, a new set 2 will be drawn from the prior distribution
centred on set 1. This process allows the transition operator to guide
the chain towards the best-fitting region of the parameter space.

4.3.2 Optimization

To estimate the target probability distribution for each parameter,
a typical MCMC chain is made of 104 to 105 iterations when used
to explore the parameter space for quick operations such as curve
regressions. However, in this study, we focus on assessing the effi-
ciency of using MCMC rather than using a grid method to sample
the parameter space of a suite of dynamical simulations coupled
with a radiative transfer code that is a complex and computationally
expensive operation. Even though conducting an exploration with
a grid method has the technical advantage that it can potentially
be parallelized, most studies in the literature do not exceed a few
hundreds grid points. We therefore use a limited number of 720 iter-
ations in our MCMC chain, comparable to the number of grid points
traditionally used in other studies in order to compare the results of
both methods using a limited sample of simulations. Consequences
of this choice will be discussed in the next section.

Pre-determining the number of required iterations in the chain to
reach convergence towards the best-fitting region requires an initial
trial MCMC chain and complex statistics to generally overestimate
the number of necessary iterations (Raftery & Lewis 1995). In the
MCMC literature – see Cowles & Carlin (1996) or Sinharay (2003)
for a complete review of MCMC convergence tests, most tests use
the output of the chain to diagnose convergence and we use the
same procedure in this study. In addition, while the MCMC chain is
expected to converge regardless of the choice of the starting point of
the chain (the first set of parameters mp1, ap1, and ep1), the number
of iterations leading to the convergence will depend on the initial
starting point. In practice, a small number of iterations at the begin-
ning of the chain are thrown out: this aims to reduce the dependence
of the target probability distribution of each parameter on the exact
starting point. We plot the evolution of parameters within the chain
as well as the autocorrelation function, which estimates how sets
of parameters at different iterations in the chain are related, to de-
termine a satisfactory number of iterations to remove as a ‘burn-in
period’ and reduce the impact of the starting point choice.

Three conditions should be checked when employing the MCMC
method: first, we have to ensure that the correct region of the param-
eter space has been explored. We check this requirement by running
multiple chains with different starting values (mp1, ap1, and ep1) to
ensure that all chains converge towards a similar target probability
distribution of the three parameters by conducting an analysis of
variance of all target probability distributions. Secondly, to ensure
the best fit has been found, the chain has to reach a stable state
and further sampling of the parameter space should not signifi-
cantly change the resulting target probability distribution of each
parameters. We check this criteria by plotting the evolution of each
parameter to verify that the parameters have effectively converged
towards the best-fitting values.

Finally, to ensure the best performance of the chain, the op-
timal acceptance rate, α, should be between 25 and 40 per cent
(Roberts, Rosenthal & Schwartz 1998), although an acceptance
rate of 15 per cent to 50 per cent has been proven to be 80 per cent
efficient by Roberts & Rosenthal (2001). An acceptance rate that is
too high indicates that the chain is not well-mixed, meaning that the
sets of initial parameters are drawn too close to each other in the 3D
parameter space and that the chain is not exploring the parameter

space fast enough. On the other hand, too small an acceptance rate
means that too many candidates are rejected and that the chain is
not moving through the parameter space efficiently. We fulfil the ac-
ceptance rate condition by adjusting the standard deviation for each
parameter (σap = 0.90 au, σep = 0.02, and σmp = 0.25MJ) of the
normal prior distribution from which the initial sets of parameters
in the chain are randomly drawn – see Appendix B. We can then
marginalize each parameter to obtain its probability distribution.

5 R ESULTS

5.1 Convergence of the chain

We start the MCMC chain 1 with mp1 = 4.25 MJ, ap1 = 22.5 au, and
ep1 = 0.175, which roughly represents the centre of the 3D parameter
space to be explored. This model resulted in χ2

img1 = 58.2 and we let
the chain run for an additional 719 iterations. The final acceptance
rate in the chain is 23.6 per cent, which is in the optimal range.

We then used three different tests to verify that the chain has con-
verged towards the best-fitting region: we plot the evolution of the
parameters to visualize the convergence, we use the autocorrelation
to inspect the mixing level inside the chain, and we use an analysis of
variance to ensure that convergence has been reached statistically.
The first simple test is to visually analyse the evolution of each
parameter with increasing number of iterations through the chain.
After the burn-in period, the chain should converge significantly
towards the best-fitting parameters with no significant departures,
which we quantify by the chain having reached a region within 1σ

− 1.5σ of the best fit. We plot the evolution of each parameter
in Fig. 3. After 100 iterations of the chain, models have reached
χ2

img < 7.5 and all the parameters in the chain have converged to-
wards their best-fitting value (which will be presented in the next
section) and only oscillate around these values within ±1.5σ until
the end of the 720 iterations. To derive the probability distribution
of each parameters, we therefore remove the first 100 iterations of
the chain as a burn-in period in order to reduce the impact of choos-
ing a starting point in the chain on the chain statistics. However,
this method cannot guarantee that the chain is not trapped in a local
minima, and cannot ensure that all relevant regions of the parameter
space have been explored.

Autocorrelation is used to quantify the dependence of the param-
eter sets at different iterations inside the chain. Autocorrelation is
defined as:

ρh =
∑N−h

i=1 (γi − γ̄ )(γi+h − γ̄ )∑N
i=1(γi − γ̄ )2

, (4)

where ρ is the autocorrelation parameter, N the number of iterations,
γ is one of the three parameters (mp, ap, and ep), and h is the lag
(Straatsma, Berendsen & Stam 1986). Good mixing in the chain is
indicated by a decreasing correlation as the lag increases, meaning
that the parameter values of two sets widely separated in time are
independent of each other. We plot the autocorrelation for each
parameter in Fig. 4, and after ∼100 iterations, the autocorrelation
has dropped from 1.0 to less than ±0.1 and the slope continues to
converge towards 0 with increasing lag. This not only confirms a
correct level of mixing in the chain, but also supports our choice of
using the first 100 iterations as a burn-in period.

Another popular convergence test for MCMC chains developed
by Gelman & Rubin (1992) consists of doing an analysis of vari-
ance over several chains with different starting values to ensure
they all converge towards a similar target probability distribution.
Finding the same target distribution by running multiple chains with
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Figure 3. Traceplot of the three planetary parameters (mp, ap, and ep) and the evolution of the χ2 value. The blue dashed line represents the final best-fitting
values, and the black dashed lines represent the 1σ interval from Table 4. The vertical black line is the best-fitting iteration.

Figure 4. The autocorrelation function against lag for the three planetary
parameters.

different initial starting points in the parameter space ensures that
the global minima is found. We follow this method by running two
additional chains, starting at different initial set of values: we use
mp1 = 2.62 MJ, ap1 = 28.75 au, and ep1 = 0.237 for chain 2, and
mp1 = 5.875 MJ, ap1 = 16.25 au, and ep1 = 0.11 for chain 3. These
values correspond to the 1/4 and 3/4 positions in the parameter
space for each parameter. A summary of the range of planetary

parameters explored over the three MCMC chains is given in
Table 3. We then compare each parameter variance within and
between the chains to examine how the determination of the best-
fitting value within a chain compares with the best-fitting values in
the other chains. Using the formulation of Cowles & Carlin (1996),
the potential scale reduction factor (PSRF), given by

√
R, compares

the between-chain variance, B, to the within-chain variance, W:

√
R =

√
(1 − 1

N
)W + 1

N
B

W
, (5)

where N the number of iterations and

B = N

M − 1

M∑
j=1

⎛
⎝ 1

N

N∑
i=1

γ
(j )
i − 1

M

M∑
j=1

1

N

N∑
i=1

γ
(j )
i

⎞
⎠

2

, (6)

W = 1

M

M∑
j=1

1

N − 1

N∑
i=1

(
γ

(j )
i − 1

N

N∑
i=1

γ
(j )
i

)2

, (7)

with γ being one of the three parameters (mp, ap, and ep) and M the
number of chains used. If each chain has converged towards a similar
probability distribution, the PSRF value should be 1 <

√
R < 1.2.

Calculating the variance and PSRF for each parameters over the
three chains after 720 iterations leads to:

√
Rap = 1.00,

√
Rep =

1.10, and
√

Rmp = 1.35. Although running additional iterations in
the chains could furthermore reduce the PSRF of the planetary mass,
mp, the current values still indicate that all chains are converging
towards best-fitting models with similar ap and ep.
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Figure 5. The top panels of each row presents the Bayesian probability distribution for each planetary parameter with the best-fitting values indicated by the
pink line. The other panels show a χ2 colourmap for each parameter pair, where the pink hexagon corresponds to the best-fitting value.

5.2 The best-fitting model

Fig. 5 presents the results of the run of the MCMC chain 1 over
720 iterations, for which the burn-in period of 100 iterations was re-
moved. The top panel of each column represents the Bayesian prob-
ability distribution of each parameter, which is directly obtained by
plotting the frequency of the values taken by each parameter in the
chain, while the vertical pink lines correspond to the best-fitting
value. The best-fitting model (χ2

img = 0.67) was found for a planet
with mp = 7.76MJ, ap = 31.07au, and ep = 0.20, with the planet
semimajor axis and eccentricity best-fitting values corresponding to
the peak of the probability distribution. Given that the low number
of iterations in the MCMC chain prevents a high-quality assess-
ment of confidence interval, only a rough χ2 colourmaps in the
remaining panels of Fig. 5 – with the pink hexagon displaying the
best-fitting location – can be derived. These colourmaps suggest
that good models present a slight degeneracy for decreasing planet

Table 4. Best-fitting values and estimation of the confidence
intervals.

Parameters Best fit 68 Per Cent Conf. Inter.

mp (MJ) 7.76 ±0.7
ap (au) 31.07 ±1.35
ep 0.20 ±0.05

eccentricity with increasing semimajor axis, as well as illustrates
that good models are clustered around (ap = 31 au and ep = 0.2) but
can have a broad range of planetary masses with 6.5 < mp < 8. How-
ever, we can determine the probability distributions standard devia-
tion to estimate the best-fitting parameters and their uncertainties –
see Table 4. While increasing the number of iterations would help
derive stronger confidence intervals, we decided to keep the num-
ber of iterations low for several reasons. First, running dynamical
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Figure 6. Left: MCFOST deprojected synthetic image at 1.6 µm of the best-fitting model. The green star indicates the location of the star, while the disc offset
centre is represented by the green triangle. The planet’s orbit is represented by the white line and the planet’s pericentre is indicated by the white dot. Right:
MCFOST projected synthetic image at 1.6 µm of the best-fitting model using a mask of radius 26 au, equivalent to the coronograph mask used in the GPI image
of Currie et al. (2015). Bottom: MCFOST spectral energy distribution of our best-fitting model compared with data from the literature (Table 2).

simulations are computationally expensive (a run of 720 simulations
requires ∼14 d with a single eight-cores Intel Xeon E5-2660 CPU of
2.2 GHz) and as a consequence, very few dynamical studies of de-
bris discs in the literature use a set of more than a couple of hundred
simulations (Faramaz et al. 2014; Pearce & Wyatt 2014; Tamayo
2014). To further ensure that enough planetary models resulting in
disc parameters comparable to Currie et al. (2015) were explored
within our limited number of iterations, we compare the disc pa-
rameters achieved by planetary models along the MCMC chain 1
with the observational parameters derived by Currie et al. (2015)
and their associated uncertainties in Fig. C1.2 After a hundred it-
erations, most planetary models resulted in disc parameters similar
to the observational value within the observational uncertainty, and
we therefore conclude that given the uncertainty associated with
the observational parameters, our number of iterations is enough
to probe the best-fitting region with appropriate accuracy. Finally,
direct imaging is currently the only technique capable of

2 We use the authors’ uncertainty on r0 = ±1.1 au to derive the uncertainty
on the disc width, which led to an uncertainty of 0.05 on the observational
�r/r0.

detecting planets with semimajor axes >30 au. Checking the exo-
planet database3 for the eight confirmed exoplanets that have been
detected via imaging and with semimajor axes 20 < ap < 60 au,
we found that, when available, the average of uncertainties on the
planetary parameters are ap = ±3.5 au and mp =+5.6

−1.9 MJ. Our short
MCMC runs are therefore sufficient to also provide better con-
straints than those derived from current observations.

Using MCFOST, we create the SED and synthetic image at 1.6 μm
corresponding to the best-fitting model – see Fig. 6. The SED of the
best-fitting model has χ2

SED = 66.3, which is larger than the χ2 of
the best-fitting model using a parametric disc in Section 3 to estimate
the grain properties. The high χ2

SED value comes from the fact that
we are trying to reproduce the disc features and emission observed in
the near-IR and therefore our model, which is using small grains as
they are the main contributors to the emission at short wavelengths,
fails to reproduce the disc emission at the mid-IR wavelength
(10–25 μm) accurately. On the other hand, the model reproduces
the observed SED for λ < 10 μm very well. The projected synthetic

3 http://exoplanetarchive.ipac.caltech.edu, 2016 March 22.
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Figure 7. χ2 map of the 3D parameter space explored in the 360 simulations using (a) the grid sampling method and (b) MCMC sampling method. The
colourbar indicates the χ2

img value for each model.

Figure 8. Bayesian probability distribution for the parameters ap (left), ep (centre), and mp (right) for the set of 360 simulations using a grid sampling of the
parameter space (dashed blue) and the 360 first iterations of the MCMC chain 1 (red).

image at λ = 1.6 μm produced a disc with a projected offset of δ =
4.95 au, and the deprojected disc has a peak brightness location of
r0 = 47.8 au, a disc width ratio of �r/r0 = 0.37, and an eccentricity
of e = 0.12, which is a good match to the observed characteristics
of Table 1 within the uncertainties.

5.3 MCMC versus grid sampling

To further check our implementation of the MCMC sampling
method, we conduct an exploration of the parameter space using
a traditional grid sampling method. We sample the parameter space
as follows: we used six values of ap between 10 and 40 au in steps
of 5 au; 10 values of ep between 0.05 and 0.35 in steps of 0.06; and
six values of mp between 2 and 8 MJ in steps of 1.2. Those ranges
corresponds to the values typically explored in the MCMC chains
(see Table 3). A total of 360 models were conducted, and we aim
here to compare the best-fitting model and the statistics of the result
found when using a grid sampling method versus a MCMC method
for which only the first 360 iterations minus the 100 for the burn-in
period are used.

Following a grid method, the best fit (χ2
img = 2.55) is found for the

model with ap = 28 au, ep = 0.21, and mp = 8 MJ, while using only
the first 360 simulations of the MCMC chain 1, a better fit

(χ2
img = 0.70) is found for ap = 30.7 au, ep = 0.19, and

mp = 6.75 MJ. While the best-fitting values are in excellent agree-
ment between the two methods, Fig. 7 shows a χ2 map of the
grid and illustrates how the grid method can be wasteful in terms
of computational effort. More than 250 out of 360 simulations re-
turned χ2

img > 60, highlighting that 70 per cent of the time was spent
outside of the best-fitting region, while the MCMC chain converged
quickly towards the best-fitting region with all simulations having
χ2 = 7.56 after the first 100 iterations.

As a result, only poor statistics can be derived by following a grid
method: Fig. 8 presents the marginalized probability distribution of
each parameter. While the planet mass, eccentricity, and semimajor
axis distribution peak corresponds to the best-fitting model, the σ

interval confidence for mp is >1.2 MJ and no interval can be derived
for ap or ep. If we look now at the probability distribution of each
parameter derived using the first 260 iterations of the MCMC chain
1 (the first 360 simulations excluding 100 iterations as a burn-in pe-
riod) presented as the red distribution in Fig. 8, the distribution
for all parameters peaks around the best-fitting value with
σmp ∼ 0.3 MJ, while no confidence interval can be derived for ap

and ep. Although these MCMC probability distributions clearly pro-
vide less constraints on the interval confidence than the distribution
derived using the full MCMC iterations sample (Fig. 5), it still
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Figure 9. Theoretical stability map for the best-fitting model. The white
dot represents the 7.6 MJ planet with ap = 31 au and ep = 0.19, while the
lines delimit the extended orbit crossing regions between the massive planet
and a potential companion the mass of Vesta when the asteroid is either apse
aligned with the planet (red) or not (blue dashed).

presents slightly more constraints on the planetary mass confidence
interval than the interval derived using the grid method.

5.4 Dynamical shaping of the disc

We now examine the dynamics at work that is shaping the disc.
The shaping of the debris disc by the planet is done via a mix of
secular and resonant interactions, where secular interactions shape
the disc eccentricity and orientation, while resonant interactions
create dust traps and dictate their location in the disc. To understand
and analyse the stability state of this system, we first use the criteria
from Giuppone, Morais & Correia (2013) to estimate the width of
the chaotic zone around a planet with the best-fitting parameters
for an asteroid of the mass of the moon used as a proxy for the
total mass of the disc – see Fig. 9. This criterion predicts that in the
absence of planet–disc apse alignment, the outer stable zone around
the planet is restricted to a small portion of the plot with a > 45 au
and e < 0.2, while if the planet and disc are aligned, the stable zone
extend to a > 35 au with e < 0.5.

At the beginning of the simulations, since the disc and planet are
not initially aligned, particles with a < 45 au and e > 0.2 are rapidly
removed as they lie within the chaotic zone highlighted by the red
region of Fig. 9. However, after t ∼ 25 000 yr (which corresponds
to 0.7tsec for this 7.76MJ planet at 31.07 au to sculpt the disc at
48 au), secular interactions start to align the disc and planet. As a
consequence, the chaotic zone shrinks to the blue region of Fig. 9,
allowing the particles to evolve over a broader range of semima-
jor axes and eccentricities. 30 per cent of the initial test particles
population has survived by this stage. The top panel of Fig. 10 illus-
trates the impact of secular interaction on the disc eccentricity and
orientation. Initially the particles’ complex eccentricities (e cos ω,
e sin ω) are restricted to the green disc of radius e = 0.2 centred on
the origin, which corresponds to particles having an initial eccen-
tricity range between 0 < e < 0.2 (as set in the initial conditions).
By t > 0.7tsec, the complex eccentricities are now precessing about
the forced eccentricity, eforced = 0.17, as indicated by the blue arrow
and form the red disc of radius efree = eforced. In addition, because
the planet is initially set with its pericentre ωp = 0, the direction of

Figure 10. Top: complex eccentricity map (e cos ω, e sin ω) of all test parti-
cles constituting the disc at t = 0 (green) and at t = 45 000 yr (red). The blue
arrow shows the location and direction of the forced eccentricity, eforced,
of the particles population at t = 45 000 yr. Bottom: evolution plot of the
semimajor axis and eccentricity of three test particles trapped in a 4:3, 3:1,
and 5:2 MMR with the planet.

the disc forced pericentre illustrated by the blue arrow is the x-axis,
i.e. ωforced = 0. The disc and planet are therefore aligned.

In addition to secular interactions, the disc location is also shaped
by a set of resonances due to the interaction with the planet, which
result in the presence of dusty clumps in the deprojected synthetic
image of the best-fitting disc model in Fig. 6. At the beginning of
the simulation, while 70 per cent of the test particles are scattered
by the planet, the surviving particles are clustered around 38.5, 48,
and 54 au, which correspond to the 4:3, 3:1, and 5:2 mean motion
resonances. The evolution of the semimajor axis and eccentricity
of two particles trapped in the 4:3, 3:1, and 5:2 mean motion reso-
nances is shown in Fig. 10. The 3:1 MMR is trapping test particles
at a = 48 au and, as a result, the particles’ eccentricity is undergoing
adiabatic growth, while the 5:2 MMR is trapping particles around
54 au. These resonances induce stability in the disc and the final
disc is made of long-term surviving particles with semimajor
axis mainly clustered around these MMRs with an eccentricity
0 < e < 0.3.
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The new generation of high-contrast imaging instruments, such
as the GPI, can reach contrasts of 10−5 within the inner 0.4 arcsec.
Using the isochrones computed by Baraffe et al. (2003) for the
evolutionary models of brown dwarfs and giant exoplanets applied
to a 7 MJ of a same age than HD 115600, we estimate the flux ratio
contrast to be 4 × 10−5 in the H band. While technically within
the current detection threshold, there are several reasons why our
best-fitting planet was not detected on the Currie et al. image. First,
given the high inclination of the system (i = 79◦), the apparent orbit
of the planet may be hidden by the disc emission, and secondly,
most of the planet orbit is likely concealed by the coronograph
mask that has an apparent radius of 26 au, as can be seen on the
right-hand panel of Fig. 6. We however note that a small portion of
the planet’s orbit around the apocentre is situated beyond the mask,
and the planet at this position could be marginally detectable.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we conducted a numerical search for a planet respon-
sible for shaping the debris disc of HD 115600 recently imaged in
the H band by Currie et al. (2015) using GPI.

We first use the radiative transfer code MCFOST with a parametric
disc structure to derive the dust grain properties needed to fit the
observed SED in order to create synthetic images. We then used
a modified N-body integrator that incorporates radiation forces to
dynamically model the interaction between the potential companion
and the debris disc, and used MCFOST to produce synthetic images
to compare with observations. We explored the 3D parameter space
(ap, ep, and mp) of the potential planet using two different methods:
a classic grid exploration over 360 grid points, and an MCMC
approach over 720 iterations. Our main results are as follows.

(i) From our SED modelling, and by selecting the Greenburg
model where the grains are made of a core of silicate with a coating
of water ice, the disc emission is best reproduced by a disc with a
total dust mass of 0.2 Mmoon with a minimal and maximal grain size
of 0.05 and 75 μm. We however note that these parameters are not
well constrained.

(ii) From image modelling and using the MCMC scheme to ex-
plore the parameter space, we reproduce the HD115600 disc ec-
centricity, projected offset, disc width and brightness peak with a
7.76 MJ planet located at ap = 31.07 au with ep = 0.20. Such a
planet shapes the disc via a mix of secular interactions forcing the
disc eccentricity, orientation, and offset, as well as a set of planet
resonances, at 4:3, 3:1, and 5:2, trapping dust at a = 38.5, 48, and
54 au, respectively.

(iii) While technically detectable by GPI, the apparent and pro-
jected planet orbit is likely hidden by the disc emission as well
as partially concealed by the coronograph mask due to the high
inclination of the system.

(iv) Using a same total number of simulations, we compared
two methods of exploring the parameter space: an MCMC sam-
pling of the parameter space versus a grid method. We find that the
MCMC scheme not only finds a better fit to the observations, but
also converges faster towards the best-fitting region. However, we
find that using an MCMC scheme on such a short number of itera-
tions presents some limitations: while our MCMC implementation
barely passed the convergence test such as the Gelman & Rubin
(1992), it also only provides weak constraints on the confidence
intervals. Increasing the numbers of iterations would increase the
quality of the best-fitting estimation. We chose to conduct our study
with a small number (720) of simulations for multiple reasons: first,

very few studies in the literature uses more than a few hundred
dynamical simulations as they are computationally expensive and,
secondly, after about a hundred iterations, the majority of subse-
quent models resulted in disc parameters comparable to the values
obtained by Currie et al. (2015) within the observational uncertain-
ties. Finally our planetary parameters uncertainties estimated with
720 MCMC iterations are well below the current uncertainties of
parameters for planets detected via direct imaging.

For low-dimensional problems (low D < 2 − 3), like our study,
a traditional grid of M points only requires MD evaluations and
presents the advantage of being trivially parallelized. For higher di-
mensional problems, it should be noted that the MCMC efficiently
converges like

√
1/M , which is dimensionally independent and is

therefore of a large advantage over the grid technique. In this study,
we compare the efficiency of exploring our D = 3 parameter space
with a grid and an MCMC algorithm. We conclude that this work
demonstrates that the MCMC scheme is a promising method to
efficiently explore the parameter space of dynamical simulations
and allows us to localize a better-fitting region faster than the grid
method, although we also stress that the limited number of sim-
ulations makes reaching the convergence state quite challenging.
There are numerous schemes existing in the literature to explore
multidimensional parameter spaces that could represent very good
alternatives, such as the sparse gridMCMC (Menze et al. 2011) – a
scheme combining the use of both a grid and an MCMC, or the use
of grids of different resolutions successively (Horner et al. 2013).
The debris disc of HD 115600 shows interesting features that can
be reproduced by simulating the gravitational influence of an in-
ner massive planet on the disc structure. Additional observations
of HD 115600 at different wavelengths could help constraining the
planetary parameters furthermore.
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A P P E N D I X A : TH E R E C O R D I N G P RO C E S S

The small dust grains experience orbital perturbation by stellar
radiation forces and are short-lived. Collisions are the assumed

mechanism by which new dust is continuously created, and fol-
lowing our discussion in Section 4.1.2, we assume the debris disc
of HD 115600 to be either (i) in a steady state where larger plan-
etesimals collide and continuously replenish the disc with small
grains or, given the young age of the system, (ii) is replenished
by collisions of primordial grains before all are removed by stel-
lar radiation forces. Either way, collisions are expected to occur
within the HD 115600 debris disc on a time-scale shorter than the
simulation duration, and by stacking the dust distribution over the
simulation duration, at any time t we therefore mimic the dust distri-
bution for grains whose ages range from t years old to those newly
created.

It is valid to then ask if mimicking the effect of collisions
smoothens out the planet-induced features in the disc and therefore
impacts the resulting synthetic disc image (as well as the subsequent
determination of the disc parameters). In Fig. A1, snapshots of the
dust distribution at the early stage of a simulation (t = 0.004tsim)
shows a broad slightly perturbed disc, while later snapshots taken
over t > 0.04tsim (or 45 000 yr) all display a clear eccentric ring
that is apse aligned with the planet. By t = 0.4tsim, the presence of
two dust clumps corresponding to an MMR trapping can be clearly
distinguished and little disc evolution occurs after that. Interest-
ingly, the structure observed at t = 0.4tsim is consistent with the
disc structure illustrated in the deprojected MCFOST synthetic im-
age in Fig. 6, for which the dust density distribution was obtained
by stacking all the snapshots over the lifetime of the simulations.
Therefore, because both secular interactions and resonance trap-
ping occur rapidly within the disc (see also Fig. 10), no signifi-
cant difference is expected between the dust density distribution
at the end of the simulations and the dust distribution obtained by
stacking.

A P P E N D I X B : T U N I N G T H E MC M C

A quick way to verify that the parameter space has been efficiently
sampled is to have an overall acceptance rate of 25–40 per cent in
the MCMC chain. This requires adjusting the standard deviation of
the three normal prior parameter distributions, from which a new
set of parameters is drawn at every MCMC step. A commonly used
method is to have a some correlation stepping when drawing a new
set of parameters at each MCMC iteration, meaning that the value
of the standard deviation for each prior distribution is based on how
the three parameters are correlated. In this section, we provide a
short description on how to achieve this but we refer to Dunkley
et al. (2005) for more details.

Figure A1. Three evolutionnary snapshots of the dust distribution of the best-fitting model simulation of the MCMC chain 1. The yellow and blue dots
correspond to the star and planet location respectively, while the green line represents the planet orbit.
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Figure C1. Traceplot of the four disc parameters (δ, e, �r/r0 and r0) within the MCMC chain 1. The black line represents the observational value for each
parameter as determined by Currie et al. (2015), and the green region represents the uncertainties associated with each observational value.

(i) Step 1: the method consists in initially setting the normal prior
distributions with a standard deviation of σap1 = σep1 = σmp1 = 1
for all parameters, and to run the MCMC chain for a few hundreds
iterations.

(ii) Step 2: by recording how the chain moves through the param-
eter space, we can estimate the covariance matrix, C1, of the three
parameters and therefore know how the sets of parameters over all
MCMC iterations are correlated.

(iii) Step 3: the next stage is to adjust the standard deviation of
the prior distributions so that the sets of parameters would follow
the covariance we just estimated, and this requires to generate cor-
related random numbers. This process can be easily done by first
performing a Cholesky decomposition on the covariance matrix,
which consists in finding an upper diagonal matrix U1 such that
C1= UT

1U1.
(iv) Step 4: the Cholesky matrix, U1, then needs to be updated to

UU1 to obtain a better acceptance rate, where UU1 = (2.42/D) × U1,

with D = 3, the number of parameters constituting the parameter
space.

(v) Step 5: the new standard deviation for each parameters,
σap2, σep2, and σmp2 is then obtained by applying UU1 to the vector
(σap1, σep1, and σmp1).

(vi) Step 6: a new MCMC chain can be run using the correlated
stepping σap2, σep2, and σmp2, to generate the set of parameters at
each iteration of the chain.

If the new acceptance rate is not inside the ideal range, then steps
2–6 must be repeated until the acceptance rate enters the correct
range.

A P P E N D I X C : T R AC E P L OT O F T H E D I S C
PA R A M E T E R S
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